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A novel pseudo-three-timescale asymptotic procedure is developed and implemented
for obtaining accurate approximations to solutions of an evolution equation arising
in thin-film free-surface viscous flow. The new procedure, which employs strained
fast and slow timescales, requires considerably fewer calculations than its standard
three-timescale counterpart employing fast, slow and slower timescales and may
readily be applied to other evolution equations of fluid mechanics possessing wave-
like solutions exhibiting exponential decay in amplitude and variations in phase over
disparate timescales. The new method is validated on the evolution of free-surface
waves on a thin, viscous film coating the exterior of a horizontal rotating cylinder
and is shown to yield accurate solutions up to non-dimensional times exceeding by
an order of magnitude those of previous related studies. Results of the new method
applied to this test problem are demonstrated to be in excellent agreement, over large
timescales, with those of corroborative spectrally accurate numerical integrations.

1. Introduction
The present work is motivated by the analyses of Hinch & Kelmanson (2003) and

Kelmanson (2009), in which two-timescale asymptotics are used to analyse respectively
inertia-free and inertial evolution of a viscous free-surface thin film coating the exterior
of a circular cylinder rotating about its horizontal axis in a vertical gravitational field;
this is the classic problem first modelled by Moffatt (1977) and Pukhnachev (1977).
In Hinch & Kelmanson (2003) the fast timescale τ = t is used, whereas in Kelmanson
(2009), it is strained as τ = (1+ω2γ

2+· · ·)t , where γ is a non-dimensional gravitational
parameter, in order to incorporate gravitational drift a priori. In both studies, the slow
timescale is T = γ 2t , so that the asymptotic approximations cease to be uniformly
valid when t = O(γ −2). Because of the slow exponential modulation (decay) on the
timescale αT , where α is a non-dimensional surface-tension parameter, it is desirable
to extend the duration of unform validity, but the algorithmic cost of implementing

a further slow-slow timescale, T̃ = γ 4t say, is prohibitively expensive because of the
rapidly increasing algebraic complexity of the hierarchy of problems at increasing
orders of γ .

Accordingly, the idea is proposed in § 2 of also straining the slow timescale
as T = γ 2(φ2 + φ4γ

2 + · · ·)t on the physical basis that, for the parameter regime
γ 2 � α � γ � 1 considered in previous studies, free-surface waves modes are
modulated exponentially by a linear combination of surface tension and inertia,
so that the cumulative effect over several timescales is additive in the exponential
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argument. The excellent agreement in § 3 between the results of such ‘pseudo-three-
timescale’ approximations and those of spectrally accurate numerical simulations
to times t � O(γ −2) justifies this proposition at a heuristic level, and the absence
of justification at a formal level is tempered by the observation of Murdock (1991,
p. 245) that even standard three-timescale techniques have ‘quite shaky [mathematical]
foundations’, since the resulting generalized asymptotic expansions do not satisfy
uniqueness theorems. An interesting manifestation of such non-uniqueness occurs at
the end of § 2, in which two functions and two parameters are determined from only
two evolution equations by means of a subtle variation on the secularity-annihilation
argument usually associated with multiple-timescale techniques, because the evolution
equations are not formally T -secular but rather contain terms of the form T e−A(α)T

for some parameter-dependent A(α) > 0.

2. Pseudo-three-timescale asymptotics
Kelmanson (2009) derives the asymptotic evolution equation

∂tH + ∂θ{H − γ H3 cos θ + αH3∂θ (∂θ
2H + H) + RH3∂θH} =0, (2.1)

for the non-dimensional 2π-periodic ‘perturbed height’ H(θ, t) of a thin film of
viscous liquid adhering to the exterior of a horizontal cylinder of radius a rotating
with constant angular velocity ω about its axis in a gravitational field −g j . Here θ is
the usual polar coordinate centred on the cylinder axis, and the initial condition for
(2.1) is H(θ, 0) = 1. Non-dimensional parameters γ = ρgh̄2/3ωμa, α = σ h̄3/3ωμa4 and
R =(γρσ 3h̄13/81α3gμ4a13)1/2 respectively multiply leading-order terms corresponding
to gravity, surface tension and inertia, and μ, ρ, σ and h̄ are respectively the dynamic
viscosity, density, surface tension and mean dimensional film thickness of the fluid.
By Hinch & Kelmanson (2003), the parameter regime

γ 2 � α � γ � 1 (2.2)

is considered. The perturbed height is defined by

H(θ, t) ≡ h̃(2a + h̃)

h̄(2a + h̄)
, (2.3)

where h̃(θ, t) � a is the dimensional film thickness, so that the evolution equation
(2.1) is mass-conserving. If both + signs are replaced by − in (2.3) and if the sign
of R is changed in (2.1), the ensuing analysis applies to the interior ‘rimming-flow’
problem comprehensively studied by Ashmore, Hosoi & Stone (2003). Since inertial
effects in the solution of (2.1) are considered in detail in Kelmanson (2009), the Stokes
approximation R = 0 is now made in (2.1) in order to simplify all subsequent algebra
sufficiently to proceed to those orders of γ high enough to emulate the use of three
timescales.

With R =0, a solution of (2.1) is sought in the form

HN (θ, t) = 1 +

N∑
k=1

γ khk(θ, τ, T ), (2.4)

in which the hk are 2π-periodic in θ , hk(θ, 0, 0) = 0, k = 1, . . . , N , and the fast and
slow timescales are both strained as

τ = (1 + ω2γ
2 + ω4γ

4 + · · ·)t ≡ Ωτ t and T = γ 2(φ2 + φ4γ
2 + · · ·)t ≡ ΩT t, (2.5)
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in which, without loss of generality, φ2 ≡ 1. In (2.5), the fast timescale τ is strained in
order to accommodate gravitational drift, and the slow timescale is strained on the
heuristic expectation, suggested by the asymptotics of Hinch & Kelmanson (2003),
that free-surface wave modes will be modulated on slower and slower timescales
by exponential decay, so that their cumulative (multiplicative) modulating effect is
additive in the exponential arguments.

Substituting (2.4) into (2.1) follows along the lines similar to those described in
Hinch & Kelmanson (2003), the distinction now being the use of two strained
timescales (2.5) and the corresponding need to go to higher orders of γ than in
the previous study. This is presently achieved via full automation of the solution
procedure, using the algebraic manipulator Maple, as described in Kelmanson (2009).
Accordingly, only novel elements of the solution process are presently described in
any detail. At each O(γ m) in the solution tableau, hm is found to contain terms of
the form

Kmn ≡ (Amn(T )cnn + Bmn(T )snn) e−n2(n2−1)ατ , n = m, m−2, . . . , 3+(−1)m

2
, (2.6)

in which cmn = cos(mθ −nτ ), smn = sin(mθ −nτ ) and Amn(T ) and Bmn(T ) are arbitrary
functions of T , evolution equations for which arise as secularity conditions in the
O(γ m+2) problem, the γ 2 delay being physically born of a double action of gravity
on the wave modes. Note that those terms with (m odd and) n= 1 in (2.6) can
decay on only the slow timescale T . Solving the O(γ ) problem yields A11(0) = − 1
and B11(0) = 0, and solving the O(γ 2) problem yields A22(0) and B22(0) as rational
functions of α. Solving the O(γ 3) problem yields A33(0), B33(0), A31(0) and B31(0) as
rational functions of α; it also yields the coupled secularity conditions (cf. (3.8) and
(3.9) in Hinch & Kelmanson 2003)

∂T A11 = δ3A11 + η3B11 and ∂T B11 = −η3A11 + δ3B11, (2.7)

in which

δ3 = − 81α

1 + 144α2
and η3 = ω2 +

3(5 + 72α2)

2(1 + 144α2)
. (2.8)

Using the second equation in (2.8), write ω2 = ε0 − 3(5 + 72α2)/(2(1 + 144α2)) so that
η3 = ε0, from which the initial conditions A11(0) and B11(0) give B11(T ) = 0 and

K11 = − exp(δ3T ) cos(θ − τ + ε0T ).

By construction, the straining in τ accommodates gravitational drift (in the
fundamental mode, at least), and so ε0 = 0 in K11, giving

A11 = − exp(δ3T ) and ω2 = − 3(5 + 72α2)

2(1 + 144α2)
, (2.9)

in exact agreement with Hinch & Kelmanson (2003, equation (3.11)). Although ω4

and φ4 are yet to be determined, the use of a strained slow timescale T in (2.5),
rather than the augmentation of τ and T by a slower timescale, U say, has precluded
the introduction of further unknown functions because (2.7) are ordinary differential
equations (ODEs) for A11(T ) and B11(T ) rather than partial differential equations
(PDEs) for A11(T , U ) and B11(T , U ). Hinch & Kelmanson (2003) similarly obtained
A11(T ) and B11(T ) in which T = γ 2t but did not solve for Ann and Bnn, n> 1, because,
by (2.6), these harmonics decay on the fast timescale τ . However, in the present case,
explicit forms of the higher-order harmonics are needed to determine ω4 and φ4.
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In the O(γ 4) problem, the 2208 terms on the right-hand side, r4 say, of the PDE
for h4 are reduced to 1058 when the secularity conditions (2.7) are used. Secularity
conditions in r4 in the form of coefficients of c11 and s11 are precluded by the absence
of γ 3 terms in the definition of timescales (2.5). However, secularity conditions do arise
in r4 as the coefficients of c22e

−12ατ and s22e
−12ατ , yielding slow-timescale evolution

equations for A22 and B22,

∂T A22 = δ4A22 − η4B22 and ∂T B22 = η4A22 + δ4B22, (2.10)

in which

δ4 =
54α(360α2 − 23)

3600α2 + 1
+

72α

5
A2

11 and η4 =
1944α2(144α2 + 37)

(3600α2 + 1)(144α2 + 1)
. (2.11)

Unlike (2.7), (2.10) has variable coefficients via the A2
11 component of δ4, and so

both A22 and B22 do not exhibit pure-exponential behaviour on the slow timescale
T ; rather, they are both products of (different) linear combinations of cos η4T and
sin η4T and a compound-exponential term of the form

E4 ≡ exp

(
ν1 exp(ν2T ) + ν0T ν2 − ν1

ν2

)
(2.12)

in which ν0, ν2 < 0 and ν1 > 0 so that, as T → ∞, E4 → 0 in both A22 and B22. Then
the fast-timescale factor exp(−12ατ ) annihilates K22, allowing h2 to attain a steady
state under the action of surface tension. Details of the construction of the other
components of h2 are omitted. Finally, at this order, initial conditions A44(0), B44(0),
A42(0) and B42(0) are generated as (rather complicated) rational functions of α.

In the O(γ 5) problem, the 17 862 terms on the right-hand side, r5 say, of the
PDE for h5 drops to 9586 when the secularity conditions (2.7) and (2.10) are used.
Further progress is facilitated† by treating (the reduced) r5 as a polynomial, in
β ≡ exp(−12ατ ), which is found to be of the form

r5 = b0 + b1β + b2β
2 + b6β

6 + b7β
7 + b20β

20,

in which the coefficients are complicated functions of cmn, smn for (m, n) ∈
[1, 5] × [−5, 5], and Amn, Bmn for 1 � m, n � 4. Of the 9586 terms in r5, b0

(corresponding to pure-harmonic terms) contains 3739; b1 contains 4010; b2 contains
631; b6 contains 934; b7 contains 128; and b20 contains 144. The evolution equations
for A33 and B33 are the coefficients of c33 and s33 in b6, because c33e

−72ατ and s33e
−72ατ

are secular terms in r5. These evolution equations, together with A33(0) and B33(0)
obtained in the O(γ 3) problem, reveal that the slow-timescale functions A33 and B33

also contain compound-exponential behaviour of the generic form given in (2.12).
In order to complete the O(γ 3) solution h3, it still remains to determine ω4, φ4, A31

and B31: it transpires that these are all contained in b0, which is still so complex that
further progress is possible only if the 3739 terms in b0 are again filtered, this time as
a polynomial in A11; then,

b0 =

4∑
j=0

ajA
j

11

† Progress is possibly only if trigonometric terms can be converted into harmonics using Maple’s
combine command: this requires judicious and sophisticated recasting of r5 into suitable alternative
forms, since indiscriminate usage of the combine command paralyses even moderately powerful
computational platforms because of the sheer magnitude and complexity of r5.
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in which a0, a1, a2, a3 and a4 respectively contain 414, 972, 1006, 963 and 384 terms.
To extract the required evolution equations for A31 and B31, it is further necessary to
decompose each coefficient aj into a power series in α. It is the secularities induced
by c11 and s11 in b0 that respectively yield (decoupled) evolution equations for A31

and B31,

∂T A31 = δ3A31 + fA(φ4, α)A11 + gA(α)A3
11, (2.13)

∂T B31 = δ3B31 + fB(ω4, α)A11 + gB(α)A3
11, (2.14)

in which δ3 < 0 is given in (2.8), A11 is given in (2.9), and fA, fB , gA and gB are quotients
of homogeneous polynomials in α that are all O(1) as α → 0. By the first expression
in (2.9), the forcing term fA(φ4, α)A11 in (2.13) produces a response in the solution
A31 of fA(φ4, α)T exp(δ3T ), which attains a maximum of M = − fA(φ4, α)/(δ3e) at
TM = − 1/δ3, so that M, TM → ∞ as α → 0. Via (2.6), A31 has no exponential
annihilator on the fast timescale. Thus h3 is bounded for all α � 1, the range dictated
by (2.2), only if φ4 is a root of fA(φ4, α) for all α, giving

φ4 =
8545886208α8 + 444351744α6 + 4230144α4 − 75735α2 + 371

6(36α2 + 1)(1296α2 + 1)(144α2 + 1)2
.

A parallel argument applied to the solution B31 of (2.14) reveals that ω4 must be a
root of fB(ω4, α) for all α, giving

ω4 =

27(34828517376α10 − 8527970304α8 − 304383744α6 − 4025376α4 + 26844α2 − 25)

8(36α2 + 1)(1296α2 + 1)(144α2 + 1)3
,

in which the limit ω4 → −675/8 as α → 0 agrees with (2.6) of Hinch, Kelmanson &
Metcalfe (2004). Note that φ4 and ω4 are determined by making A31 and B31 bounded
functions of α for all α > 0, because the ODEs (2.13) and (2.14) are not formally
T -secular (Murdock, 1991, p. 248). Finally, both A31 and B31 are obtained in the form
(C + D exp(2δ3T )) exp(δ3T ), so that h3 is fully determined.

Using the information so far obtained, H3 can now be constructed. With certain
comparisons in § 3 in mind, it is also useful to construct H3, in which certain
modulation functions Amn and Bmn are set to their initial values when, via (2.6), they
are annihilated by the action of surface tension on the fast timescale.

Despite the implied complexity of the algebra in this section, the automated
computation of H3 on a modest Dell laptop with a 2.4 GHz Pentium 4 processor
and 512 Mb RAM running Maple 9.0 on Windows XP takes approximately 40
seconds, which time moreover includes several automated checks to ensure that all
slow-timescale functions satisfy their respective evolution equations.

3. Results and discussion
The pseudo-three-timescale expansion (P3TE) H3 obtained in § 2 requires full

solution of the O(γ 4) problem and partial solution of the O(γ 5) problem. To obtain
a formal three-timescale expansion for H3 would require full solution of the O(γ 6)
problem and partial solution of the O(γ 7) problem; given the factorial increase in
workload at each subsequent order of γ , the advantage of the present approach is
manifest. It only remains to verify the accuracy of H3 by comparison with numerical
solutions.
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Figure 1. Values at the station θ = 0 of the P3TE H3 (———), the 2TE of Hinch &
Kelmanson (2003) (---) and the numerical solution (�) extrapolated from 50-node and 100-node
fourth-order finite-difference computations, for parameter values γ = 5.3185335 × 10−2 and
α = 4.80710332 × 10−3, in time intervals (a) 0 � t � 10, (c) 90 � t � 100 and (e) 990 � t � 1000.
Figures (b), (d) and (f) are enlarged views, of the insets in figures (a), (c) and
(e) respectively, in which are added both H3 (· · ·) and corroborative spectral 32-node numerical
results (+) computed by C. M. Groh (2008, private communication) using the fast Fourier
transforms (FFTs) of Frigo & Johnson (1998).
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Figure 2. Logarithmic (base 10) plots of the absolute difference at the station θ = 0 between
the full solution H3 and reduced solution H3 in which slow-timescale modulation functions
Smn(T ) are replaced by their initial values Smn(0) for (a) mn= 22 and mn= 33 and (b) mn= 22,
mn= 33 and mn= 31; (b) therefore demonstrates that fixing the slow-timescale components
A31 and B31 at their initial values is mitigated (in the sense of the resulting plateau at a
relative error O(10−3) per cent) by their premultiplication by γ 3. The dashed straight line has
the gradient −12αΩτ , signifying the decay of the first harmonic (n=2) in the exponential
argument −αn2(n2 − 1)τ in (2.6).

Figure 1 shows a comparison, at θ = 0 and for t = O(10), O(102) and O(103), of the
P3TE with both the two-timescale expansion (2TE) of Hinch & Kelmanson (2003)
and numerical solutions (extrapolated finite-difference and spectral) computed by
discretizing the evolution equation (2.1). Parameters γ and α are given the numerical
values used in Hinch & Kelmanson (2003) in order to effect the comparison. It is clear
that the P3TE represents well both the drift and decay of the modulated free-surface
waves and that the duration of validity of this representation is much improved
over the 2TE; in particular, figure 1(e) shows an appreciable relative drift developing
between the 2TE and the numerical results by t = O(103).

Also shown in figures 1(b), 1(d) and 1(f) is the reduced PT3E H3, introduced
at the end of § 2, in which the slow-timescale functions in the fast-timescale decay
terms K22 and K33 are replaced by their initial values: so rapid is this decay that
the difference between H3 and H3 is perceptible on the presented scale in only fig-
ure 1(b), at the earliest time t = O(10). A more detailed scrutiny of reducing H3 to H3

is given in figure 2, which demonstrates the effect of also replacing the slow-timescale
components of K31 by their initial values in order to simplify matters at O(γ 5) in § 2;
although by (2.6) there is no fast decay in this case, the relative errors incurred in H3

are O(10−3) per cent, so in practical terms it is arguable that A31 and B31 need not be
computed, their evolution equations having served the purpose of yielding ω4 and φ4.

Figure 3 demonstrates the P3TE’s accurate representation of both decay and drift at
large times, specifically t ≈ 2000 and t ≈ 3000, by comparison with numerical solutions
of (2.1). Because figures 1(a), 1(c) and 1(e) and both graphs in figure 3 have a width
of 10 time units, it is possible to compare relative drifts in them; this reveals that
the P3TE drift error at t ≈ 3000 is comparable with the 2TE drift error at t ≈ 100,
quantifying the large extension in uniform validity of the former. In this sense, the
heurisitic suggestion of the strained slow timescale in (2.5) is justified, although it is
recognized that the present approach may work so well in this case because of the
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Figure 3. Large-time values at the station θ = 0 of the present P3TE H3 (———), the
2TE of Hinch & Kelmanson (2003) (-----) and the numerical solution (�) from 50-node
fourth-order finite-difference computations, for parameter values γ = 5.3185335 × 10−2 and
α = 4.80710332 × 10−3, in time intervals (a) 1990 � t � 2000 and (b) 2990 � t � 3000. The
vertical scale is 10 times bigger than those in figures 1(a), 1(c) and 1(e). The accurate
representation of both the drift and decay at these large times justifies the heurisitic suggestion
of the strained slow timescale in (2.5).
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Figure 4. Detail of (a) maxima and (b) minima of H3 at the station θ = 0 in the interval
0 � t � 40, for γ = 5.3185335 × 10−2 and α =4.80710332 × 10−3.

low-harmonic nature of the solution profile and may not perform equally well in
modelling the low-α shock-like solutions in Hinch et al. (2004).

Finally, a feature of the maximum and minimum wave heights observed by Hinch &
Kelmanson (2003) is revisited and explained. With α > 0 it is reasonable to expect
that the maximum and minimum elevations will respectively be monotone-decreasing
and increasing functions of t . This is not always the case, and an example of
counterintuitive behaviour in H3 is illustrated in figure 4 and also in figures 4–7 of
Peterson, Jimack & Kelmanson (2001). Since the same behaviour occurs if only H2

is used, the min–min phenomenon is due to the combination J ≡ h1 + γ h2. At the
station θ = 0, local minima in J occur at integer multiples of the period P = 2π/Ωτ ,
where Ωτ is defined in (2.5) and determined by ω2 and ω4. The time of the minimum
minimum may be found by substituting t = kP , k ∈ �, into J and solving ∂kJ =0.
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Closed-form solution of this equation for k is not possible; expanding it as a series
in γ and discarding terms O(γ 3) and above is the only truncation that admits an
explicit approximation for k, as the solution of

exp(−24απk) ≈ 9γ (1 + 36α2)

2(1 − 72α2)
. (3.1)

Although the low order of truncation used in obtaining (3.1) means that its solution,

k̃ say, is not an integer, the time t̃ of the minimum minimum is approximated by

t̃ = k̃P ≈ 1

12αΩτ

ln
2(1 − 72α2)

9γ (1 + 36α2)
, (3.2)

in which the reciprocal factor on the right-hand side is identifiable as having
originated from the decay of the first harmonic. For the parameters in the caption
of figure 4, (3.2) yields t̃ ≈ 25.3, which agrees well with the value in the figure. With
γ = 5.3185335 × 10−2 as in figure 4 and α =2.40355166 × 10−3, (3.2) yields t̃ ≈ 129.414;
in this case H3 has a minimum minimum at t ≈ 132. When t =(k +1/2)P is similarly
substituted into J, the equation corresponding to (3.1) becomes

exp
(

− 24απ
(
k + 1

2

))
≈ 9γ (1 + 36α2)

2(72α2 − 1)
, (3.3)

the right-hand side of which is negative, so that there is no corresponding max–max
phenomenon, at least in the parameter range (2.2) in which the present theory is
valid. However, in the low-α limit, where the alternative theory of Hinch et al. (2004)
is valid, figure 6 of Peterson et al. (2001) confirms the existence of a max–max
phenomenon.
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